Structure and stability of internodal myelin in mouse models of hereditary neuropathy.
نویسندگان
چکیده
Peripheral neuropathies often result in abnormalities in the structure of internodal myelin, including changes in period and membrane packing, as observed by electron microscopy (EM). Mutations in the gene that encodes the major adhesive structural protein of internodal myelin in the peripheral nervous system of humans and mice--P0 glycoprotein--correlate with these defects. The mechanisms by which P0 mutations interfere with myelin packing and stability are not well understood and cannot be provided by EM studies that give static and qualitative information on fixed material. To gain insights into the pathogenesis of mutant P0, we used x-ray diffraction, which can detect more subtle and dynamic changes in native myelin, to investigate myelin structure in sciatic nerves from murine models of hereditary neuropathies. We used mice with disruption of one or both copies of the P0 gene (models of Charcot-Marie-Tooth-like neuropathy [CMT1B] or Dejerine-Sottas-like neuropathy) and mice with a CMT1B resulting from a transgene encoding P0 with an amino terminal myc-tag. To directly test the structural role of P0, we also examined a mouse that expresses P0 instead of proteolipid protein in central nervous system myelin. To link our findings on unfixed nerves with EM results, we analyzed x-ray patterns from unembedded, aldehyde-fixed nerves and from plastic-embedded nerves. From the x-ray patterns recorded from whole nerves, we assessed the amount of myelin and its quality (i.e. relative thickness and regularity). Among sciatic nerves having different levels of P0, we found that unfixed nerves and, to a lesser extent, fixed but unembedded nerves gave diffraction patterns of sufficient quality to distinguish periods, sometimes differing by a few Angstroms. Certain packing abnormalities were preserved qualitatively by aldehyde fixation, and the relative amount and structural integrity of myelin among nerves could be distinguished. Measurements from the same nerve over time showed that the amount of P0 affected myelin's stability against swelling, thus directly supporting the hypothesis that packing defects underlie instability in "live" or intact myelin. Our findings demonstrate that diffraction can provide a quantitative basis for understanding, at a molecular level, the membrane packing defects that occur in internodal myelin in demyelinating peripheral neuropathies.
منابع مشابه
Foot Pad Skin Biopsy in Mouse Models of Hereditary Neuropathy
Numerous transgenic and knockout mouse models of human hereditary neuropathies have become available over the past decade. We describe a simple, reproducible, and safe biopsy of mouse skin for histopathological evaluation of the peripheral nervous system (PNS) in models of hereditary neuropathies. We compared the diagnostic outcome between sciatic nerve and dermal nerves found in skin biopsy (S...
متن کاملA laminin-2, dystroglycan, utrophin axis is required for compartmentalization and elongation of myelin segments.
Animal and plant cells compartmentalize to perform morphogenetic functions. Compartmentalization of myelin-forming Schwann cells may favor elongation of myelin segments to the size required for efficient conduction of nerve impulses. Compartments in myelinated fibers were described by Ramón y Cajal and depend on periaxin, mutated in the hereditary neuropathy Charcot-Marie-Tooth disease type 4F ...
متن کاملHereditary sensory and autonomic neuropathy: A case report
A 24-year old female patient with the history of pressure ulcers in distal extremities resulted in severe deformity will be reported. Her disease started when she was 9 years old and a similar history was found in her brother. In physical examination, pain and temperature sensations were impaired in distal extremities. Nerve conduction velocity showed impaired sensory and normal motor responses...
متن کاملOral curcumin mitigates the clinical and neuropathologic phenotype of the Trembler-J mouse: a potential therapy for inherited neuropathy.
Mutations in myelin genes cause inherited peripheral neuropathies that range in severity from adult-onset Charcot-Marie-Tooth disease type 1 to childhood-onset Dejerine-Sottas neuropathy and congenital hypomyelinating neuropathy. Many myelin gene mutants that cause severe disease, such as those in the myelin protein zero gene (MPZ) and the peripheral myelin protein 22 gene (PMP22), appear to ma...
متن کاملImmune deficiency in mouse models for inherited peripheral neuropathies leads to improved myelin maintenance.
The adhesive cell surface molecule P(0) is the most abundant glycoprotein in peripheral nerve myelin and fulfills pivotal functions during myelin formation and maintenance. Mutations in the corresponding gene cause hereditary demyelinating neuropathies. In mice heterozygously deficient in P(0) (P(0)(+/-) mice), an established animal model for a subtype of hereditary neuropathies, T-lymphocytes ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of neuropathology and experimental neurology
دوره 64 11 شماره
صفحات -
تاریخ انتشار 2005